

2 March 2023

Latest Assay Results: Average UG2 grade now 9.48g/t (6PGE+Au) with Additional Resource Potential in Far East Block

Highlights:

- Assay results for 15 UG2 intersections received to-date have returned an average 3PGE+Au grade of 7.86g/t and 6PGE+Au of 9.48g/t over 73cm, which remains above the grade in the JORC-2012 Inferred Mineral Resource estimate.
- The most economic reef, the UG2, has now been intersected in 24 of the 26 drillholes completed to date, which, together with the latest assays confirms continuity of the mineralisation.
- Latest results include three intersections within the newly discovered Far East Block. This could result in a potential increase in the size of the Mineral Resource at Bengwenyama.
- Additional assays for the Merensky Reef (MR) resulted in an increased average 3PGE+Au grade for the MR to 2.56 g/t over an impressive width of 202 cm.
- 8,668 metres of drilling to-date from 29 drill-holes, with 26 holes completed and three in progress.
- Drilling has been halted temporarily at the Bengwenyama project following unlawful protests. The Company is working closely with the full support of Bengwenyama community leaders to resume safe operations at the earliest opportunity.

Southern Palladium (ASX:SPD and JSE:SDL), 'Southern Palladium' or 'the Company') is pleased to release additional results for the MR and UG2 reefs on the Bengwenyama Platinum Group Metal (PGM) project located on the Eastern Limb of the world class Bushveld Complex, South Africa.

Progressive UG2 and Merensky Reef Results

In total, 8,668 meters of drilling has been completed to date from 29 drillholes - 26 completed and 3 in progress - (refer Appendix 1). Assay results for 15 UG2 reef intersections have been received (refer Table 1) with the average 3PGE+Au grade now 7.86 g/t over 73 cm (intersection width). The expanded sample results remain above the expected 3PGE+Au grade in the inferred Mineral Resource Estimate (MRE) of 7.7 g/t over 71 cm. The 6PGE+Au grade across the 15 intersections is 9.48 g/t.

The additional assay results have continued to confirm the continuity of both the UG2 and MR on the project. Assay results show the average grade of the two reefs continues to confirm the reef widths and grade of the JORC compliant inferred MRE.

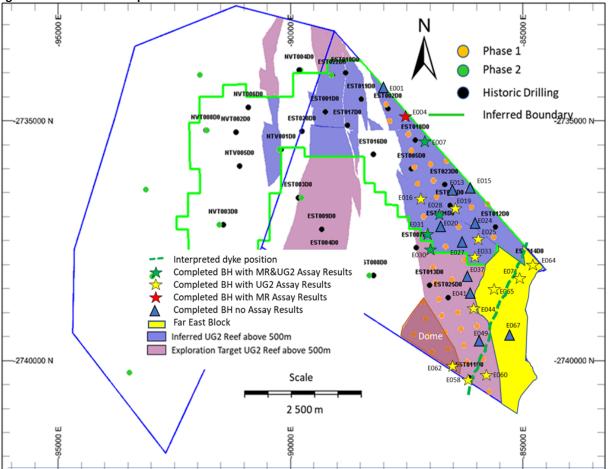
Managing Director Johan Odendaal, said: "The drill programme has now made significant progress and we are pleased with the PGM mineralisation observed in assay results for both reefs, as well as the new Far East Block zone. These results continue to confirm the broader mineralised structure of the reef in line with the geological model in the Inferred Mineral Resource Estimate (MRE). The average 3PGE+Au grades also continue to confirm the grades in the MRE - a JORC 2012-compliant Inferred Mineral Resource of 18.8Moz across the UG2 and Merensky reefs. Assay results for the Far East Block reaffirmed the project's long-term commercial potential as one of the last remaining PGM development opportunities in the Bushveld Complex. We look forward to updating investors with the ongoing progression of the drill programme and the next round of assay results in the coming weeks, which is forming the base for our Pre-Feasibility Study (PFS) that commenced earlier this year."

Drilling summary

Of the 26 completed drillholes, the UG2 Reef has been encountered in 24 holes. One drillhole appears to have been faulted out at the expected depth, and in one case the reef was not developed. This is considered very encouraging, given the typical distribution of potholes in the UG2 on the Eastern Limb in this area.

Of the 26 drillholes, 12 were expected to intersect the Merensky Reef (MR) as they were drilled east of the subcrop. Of these, nine intersected the MR and two were faulted with one intersection (E013) being inconclusive at this stage.

The distribution of the completed drillholes is shown in Figure 1. The drillholes with assay results are also highlighted in Figure 1 below.


Southern Palladium notes that drilling has been halted temporarily at the Bengwenyama project following unlawful protests. The Company is working closely with the full support of Bengwenyama community leaders and its advisors to resume safe operations at the earliest opportunity.

Additional resource potential within the Far East Block

The latest assays also included results for three intersections east of the dyke in the Far East Block (*refer Figure 1*). This area was originally thought not to host the UG2 reef, and the confirmation of UG2 intersections in the Far East Block (*refer ASX Announcement 20 December 2022*) could result in a potential increase in the size of the Mineral Resource at Bengwenyama.

Assays for three drillholes (E064, E071 and E065) in the Far East Block confirm the presence of PGM mineralisation, including 7.87g/t 3PGE+Au from a sample width of 73cm (E065). Early indications are that the prill split in this block could change, with the prill split for these three drillholes showing increased levels of Platinum where Pt:Pd:Rh:Au is 49:39:11:1. This compares to the prill split of the 12 drillholes west of the dyke being 44.5:44.5:9.6:1.4.

BHID	From (m)	To (m)	UG2 sampled width (cm)	Pt (g/t)	Pd (g/t)	Rh (g/t)	lr (g/t)	Os (g/t)	Ru (g/t)	Au (g/t)	3PGE+Au (g/t)	6PGE+Au (g/t)	Ni (%)	Cu (%)	Cr ₂ O ₃ (%)
E062	31.25	32.30	105	3.80	3.57	0.88	0.32	0.14	1.43	0.08	8.33	10.22	0.15	0.03	29.56
E058	140.86	141.31	45	4.69	5.64	0.82	0.26	0.19	1.46	0.22	11.37	13.28	0.23	0.01	39.37
E019A	315.83	316.64	81	4.25	4.19	0.79	0.26	0.15	1.31	0.13	9.36	11.09	0.16	0.03	30.87
E033	253.60	254.25	65	4.21	5.00	0.84	0.28	0.16	1.32	0.17	10.21	11.98	0.16	0.02	32.64
E028	373.24	373.81	57	3.40	2.93	0.65	0.23	0.15	1.18	0.05	7.03	8.59	0.13	0.00	31.07
E031	416.55	417.22	67	3.30	3.73	0.63	0.19	0.13	1.09	0.16	7.81	9.23	0.22	0.06	29.36
E025	260.40	261.32	92	3.53	3.43	0.85	0.24	0.16	1.14	0.10	7.91	9.46	0.18	0.04	25.86
E071	179.98	180.75	77	2.94	2.59	0.59	0.19	0.13	0.97	0.12	6.24	7.54	0.16	0.04	28.12
E064	156.17	157.07	90	2.36	1.53	0.49	0.16	0.11	0.83	0.02	4.40	5.51	0.12	0.01	26.50
E030	409.53	410.09	56	4.05	5.20	0.96	0.31	0.20	1.49	0.19	10.40	12.40	0.19	0.04	32.46
E007	417.40	418.14	74	3.98	3.31	0.91	0.29	0.19	1.43	0.08	8.29	10.20	0.16	0.04	31.11
E060D1	178.76	179.31	55	4.14	3.49	1.02	0.33	0.23	1.51	0.06	8.72	10.80	0.14	0.02	31.95
E016	449.22	450.03	81	3.18	2.09	0.71	0.22	0.15	1.08	0.03	6.01	7.46	0.15	0.02	29.13
E044	258.73	259.44	71	2.94	3.10	0.59	0.20	0.15	1.08	0.13	6.76	8.19	0.15	0.03	33.63
E065	231.79	232.52	73	3.49	3.44	0.83	0.25	0.17	1.27	0.12	7.87	9.57	0.16	0.04	28.97
Wei	ghted Ave	rage	73	3.56	3.43	0.76	0.25	0.16	1.22	0.10	7.86	9.48	0.16	0.03	30.22
(3	PGE+Au)	Prill Split (%)	45.3	43.7	9.7				1.3	100				
(6	PGE+Au)	Prill Split (%)	37.5	36.1	8.1	2.6	1.7	12.9	1.1		100			

One more MR intersection assay result (E007) has been received since the previous announcement (*refer Table 2*). This has resulted in the average 3PGE+Au grade for the MR to date increasing to 2.56 g/t over 202cm, thereby moving closer to the expected 3PGE+Au grade of 2.96 g/t over 191cm.

BHID	From (m)	To (m)	MR sampled width (cm)	Pt (g/t)	Pd (g/t)	Rh (g/t)	lr (g/t)	Os (g/t)	Ru (g/t)	Au (g/t)	3PGE+Au (g/t)	6PGE+Au (g/t)	Ni (%)	Cu (%)
E028	66.68	68.68	200	1/0	0.47	0.10	0.03	0.03	0.21	0.08	2.14	2.41	0.09	0.02
E020		212.92			0.44	0.06	0.03	0.03	0.21	0.00	1.73	1.92	0.00	0.02
E030		144.77			0.63		0.02	0.02	-	0.15	2.56	2.88	0.13	0.02
E031		124.31			0.91	0.10	0.03	0.03	-	0.16	2.86	3.15	0.14	0.07
E007	100.36	102.56	220	2.15	0.89	0.12	0.04	0.04	0.24	0.11	3.27	3.59	0.19	0.06
Weighte	ed Avera	ge	202	1.63	0.67	0.10	0.03	0.03	0.21	0.11	2.51	2.78	0.13	0.04
(3PG	E+Au) P	rill Split	(%)	64.9	26.6	4.0				4.5	100			
(6PG	E+Au) P	rill Split	(%)	58.6	24.0	3.6	1.2	1.1	7.5	4.0		100		

Table 2: Summary of the Progressive Merensky Reef Assay Results

This announcement has been approved for release by the Board of Southern Palladium Limited.

About Southern Palladium:

Southern Palladium Limited (ASX:SPD, JSE:SDL) is a dual-listed platinum group metal (PGM) company developing the advanced Bengwenyama PGM project, particularly rich in palladium/rhodium, in South Africa. The project is located on the Eastern Limb of the Bushveld Complex, which contains more than 70% of the world's known Platinum Group Metal (PGM) Resources.

With its 70% stake in the project, the Company's focus will be on the delivery of a Pre-Feasibility study and Mining Right application through a geophysical survey that has recently been completed, a two-phase diamond drill programme which has commenced in August 2022 as well as various technical studies to be completed.

A major development opportunity in the global PGM market, previous exploration at Bengwenyama has already delivered a JORC 2012-compliant Inferred Mineral Resource of 18.8Moz within two ore horizons – the UG2 chromitite and Merensky Reef.

In addition, an assessment by mining industry consultants CSA Global assessed the total resource potential of Bengwenyama at between 134–201Mt at a grade of 3.5–5.2 (3 PGE + Au g/t). The Company is led by an experienced on-ground management team including some of South Africa's most high-profile mining industry executives.

JORC Statement

The information in this report that relates to Mineral Resources at the Bengwenyama Project is based on details originally reported in the Independent Technical Assessment Report (ITAR) No. R246.2021 prepared by CSA Global dated 19 April 2022 contained in the Company's Prospectus and Pre-Listing Statement dated 22 April 2022. The information in the ITAR that relates to

Technical Assessment of the Mineral Assets, Exploration Targets, or Exploration Results is based on information compiled and conclusions derived by Dr Brendan Clarke, a Partner and an employee of CSA Global. The information in the ITAR that relates to Mineral Resources is based on work undertaken by Anton Geldenhuys, a Principal Consultant and employee of CSA Global. The Prospectus containing the ITAR can be found on the Company's website at: <u>https://www.southernpalladium.com/site/investor-centre/prospectus</u>

The Company confirms that it is not aware of any new information or data that materially affects the information included in the ITAR. The Company also confirms that all material assumptions and technical parameters underpinning the estimates in the ITAR continue to apply and have not materially changed. In addition, the Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified.

Competent Person Statement

The scientific and technical information contained in this announcement has been reviewed, prepared and approved by Mr Uwe Engelmann (BSc (Zoo. & Bot.), BSc Hons (Geol.), Pr.Sci.Nat. No. 400058/08, FGSSA). Mr Engelmann is a director of Minxcon (Pty) Ltd and a member of the South African Council for Natural Scientific Professions, and has sufficient experience relevant to the styles of mineralisation and activities being undertaken to qualify as a Competent Person, as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Engelmann has a beneficial interest in Southern Palladium through a shareholding in Nicolas Daniel Resources Proprietary Limited.

For further information, please contact:

Johan Odendaal Managing Director Southern Palladium Phone: +27 82 557 6088 Email: johan.odendaal@southernpalladium.com

Media & investor relations inquiries: Sam Jacobs, Six Degrees Investor Relations: +61 423 755 909

Follow <u>@SouthernPalladium</u> on Twitter

Follow Southern Palladium on LinkedIn

Appendix 1. Reef Intersection Summary for Bengwenyama Drillholes

Drilling			Merensky R	eef			UG2 Reef	
BH ID	From (m	To (m)	Intersection Width (m)	Comment	From (m	To (m)	Intersection Width (m)	Comment
E019	20.25	22.45	2.20	Highly weathered & friable, inconclusive	-	-	-	Hole abandoned
E019A	19.55	22.35	2.80	Highly weathered & friable, inconclusive	315.85	316.61	0.76	Complete intersection
E060	-	-	-	No MR expected – East of MR subcrop	-	-	-	Core loss
E060_D1	-	-	-	No MR expected – East of MR subcrop	178.78	179.29	0.51	Complete intersection
E062	-	-	-	No MR expected – East of MR subcrop	31.27	32.30	1.03	Complete intersection, moderately weathered
E062_D1	-	-	-	No MR expected – East of MR subcrop	31.45	32.27	0.82	Moderately weathered & faulted. Incomplete intersection. Core loss.
E062_D2	-	-	-	No MR expected – East of MR subcrop	31.16	31.56	0.40	Moderately weathered & faulted. Incomplete intersection. Core loss.
E058	-	-	-	No MR expected – East of MR subcrop	140.88	141.29	0.41	Complete intersection
E033	-	-	-	No MR expected – East of MR subcrop	253.62	254.25	0.63	Complete intersection
E028	66.70	68.66	1.96	Complete intersection	373.26	373.79	0.53	Complete intersection
E004	210.77	212.90	2.13	Complete intersection	517.33	517.57	0.24	Poorly developed UG2
E004_D1	-	-	-	Deflection below MR	515.83	516.52	0.69	Poorly developed UG2
E030	143.00	144.68	1.68	Complete intersection	409.55	410.07	0.52	Complete intersection
E025	-	-	-	No MR expected – East of MR subcrop	260.42	261.32	0.90	Complete intersection
E037	-	-	-	No MR expected – East of MR subcrop	-	-	-	Not present / Pothole?
E049	-	-	-	No MR expected – East of MR subcrop	-	-	-	Faulted
E031	122.40	124.29	1.89	Complete intersection	416.57	417.19	0.62	Complete intersection
E044	-	-	-	No MR expected – East of MR subcrop	258.75	259.42	0.67	Complete intersection
E016	-	-	-	Faulted	449.24	450.01	0.77	Complete intersection
E007	100.38	102.54	2.16	Complete intersection	417.42	418.12	0.70	Complete intersection
E064	-	-	-	No MR expected – East of MR subcrop	156.19	157.05	0.86	Complete intersection
E071	-	-	-	No MR expected – East of MR subcrop	180.04	180.73	0.69	Complete intersection
E065	-	-	-	No MR expected – East of MR subcrop	231.81	232.50	0.69	Complete intersection
E001	259.78	261.44	1.66	Complete intersection	548.07	549.21	1.14	Complete intersection
E015	-	-	-	No MR expected – East of MR subcrop	291.89	292.63	0.74	Complete intersection

E020	54.20	54.57	0.37	MR faulted	342.90	343.56	0.66	Complete intersection
E041	-	-	-	No MR expected – East of MR subcrop	250.95	251.60	0.65	Complete intersection
E067	-	-	-	No MR expected – East of MR subcrop	299.70	300.20	0.50	Complete intersection
E013	12.00	18.62	6.62	Highly weathered & friable, inconclusive? (core loss)	321.26	321.76	0.50	Complete intersection
E024	-	-	-	No MR expected – East of MR subcrop	278.77	279.26	0.49	Complete intersection
E069*	-	-	-	No MR expected – East of MR subcrop	-	-	-	UG2 expected ~ 240m
E027	-	-	-	No MR expected – East of MR subcrop	284.47	285.04	0.57	Complete intersection
E014*	37.28	39.41	2.13	Complete intersection	-	-	-	UG2 expected ~ 327m
E052*	-	-	-	No MR expected – East of MR subcrop	-	-	-	UG2 expected ~ 126m

Red italic with asterix are drillholes in progress.

Appendix 2. JORC Checklist – Table 1 Assessment and Reporting Criteria

		MPLING TECHNIQUES AND DATA							
Criteria	Explanation	Detail							
	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to	20 cm samples are taken within the reef horizon unless there is a lithological reason to deviate from this. A single sample is also taken in the hanging wall and footwall to test for mineralisation in the direct waste rock. The samples are split with a core saw and one half is submitted to the laboratory and the other half keep in the core tray.							
Sampling techniques	ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	The core is orientated in such a way that the two halves are equal.							
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	The sampling methodology is standard and as per industry practice in the Bushveld Complex (BC). The samples are 20 cm in length and are split into two equal halves with one half being submitted for analysis. The core size starts as HQ (10 m to 50 m) but is NQ by the time the reef is intersected.							
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc.).	The drillholes start with HQ (for approximately 10-50 m) in the weathered zone but are then drilled NQ once in the fresher material. The drill rigs being utilised have been the CS 1500, Delta 520 and a smaller Longyear 44. The drill contractor is Geomech Africa.							
	Method of recording and assessing core and chip sample recoveries and results assessed.	Initially the core was scanned in with the software ScanIT which scans the core with high resolution photos and the geologists reconcile the depths and core losses per 3 m run. The Core recoveries and RQD are then calculated for the drillhole. ScanIT has however been discontinued and the core is now photographed and the core recovery and RQD is calculated manually by the geological assistants.							
Drill sample recovery	Measures taken to maximise sample recovery and ensure representative nature of the samples.	The geologist informs the drilling supervisor at what depth the reef is expected so that they can take extra precautions around the anticipated reef depth. The core recoveries are measured per 3 m run and if there is excessive core loss in the reef horizon it is marked as a non-representative sample and will not be used in the resource estimation process.							
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Samples have been submitted to the ALS laboratory in Johannesburg, but there is only limited data available at this stage, so this has not been checked yet. The core recoveries for the intersections however all have good core recoveries besides the faulted intersections.							
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	The core was initially scanned into ScanIT software which produced high resolution images. This has however been discontinued. The logging is conducted on paper log sheets or tablets at the core with dropdown menus. Legends have been set up in excel that cover the necessary detailed required for Mineral Resource estimation. Alpha angles and structure detail is also observed and logged. The beta angle is not measured as the core is not orientated but the downhole televiewer survey supplies structural orientation information which is incorporated into the logs.							
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	Core logging is qualitative and utilises excel spreadsheets on tablets.							
	The total length and percentage of the relevant intersections logged.	The total drillhole is geologically logged and photographed and the televiewer survey is conducted from 100 m above the reef horizon for additional structural information.							
Sub-sampling	If core, whether cut or sawn and whether quarter, half or all core taken.	The core is cut in two equal halves for sampling and storage purposes.							
techniques and sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	This project only makes use of core drilling.							

	SECTION 1: SAM	IPLING TECHNIQUES AND DATA								
Criteria	Explanation	Detail								
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The sample preparation code at ALS is PREP-31H which has the following procedure: - Login of samples into the system, weighing, fine crushing of entire sample to 70% - 2 mm, split off 500 g and pulverize split to better than 85% passing 75 microns.								
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	The QAQC sequence is as follows: - If the batch is less than 20 samples the batch starts and ends with a blank and a CRM and duplicate are inserted into the sample stream. If the batch is great than 20 samples then the batch starts and ends with a blank and every tenth sample is either a CRM, duplicate or blank. This equates to between 20% and 10% QAQC samples.								
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	The sampling of the reef is reef material only except for the first and lat sample of the reef as it will have 2 cm of hanging wall or footwall materia to ensure the entire mineralisation is captured. This 2 cm dilution will be calculated into the reef width. The hanging wall and footwall are sample separately to the reef. Hence the reef samples are representative of the <i>situ</i> reef horizon. Requested duplicates are pulp duplicates and the CRW are material from the UG2 and MR from African Mineral Standards (AMIS								
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The reef horizon is sampled in 20 cm increments so that the grade distribution can be observed if a mining cut is required. The UG2 reef is approximately 70 cm wide and will have three to four samples which will be composited later. The MR is wider at around 200 cm and will have about ten individual samples to determine the grade distribution. These will also be composited later for Mineral Resource Estimation purposes. Hanging wall and footwall samples are also taken to check if there is any mineralisation in the direct surrounding waste rock.								
	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	This is industry best practice for the BC. The UG2 reef will be assayed for 4E and 6E as well as for Cu, Ni, Co, Cr and Fe. The MR will be assayed for the same except the Cr and Fe as it is not a chromitite seam but a pyroxenite layer.								
Quality of assay data and laboratory tests		The ALS methods are as follows: - PGM-ICP23 - Pt, Pd, Au package using lead fire assay with ICP-AES fir 30 g nominal sample weight. Rh-ICP28 - Fire assay fusion using lead flux with Pd collector for determination by ICPAES. 10 g nominal sample weight. PGM-MS25NS - The Platinum Group Metals are separated from gangue material using the Nickel Sulphide Fire Assay procedure. J dissolution of the pulp with aqua regia, PGMs are determined by ICP-I ME-XRF26s - Analysis of Chromite ore samples by fused disc / XRF. method is suitable for the determination of major and minor elements in samples which require a high dilution digest such as Chromite of Elements that will be analysed are Cr, Cu, Ni, Fe and Co.								
		All methodologies are total.								
	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	All analytical work is undertaken by ALS Chemex South Africa (Pty) Ltd, located in Johannesburg, which is part of the ALS group. The South African laboratory is ISO 17025 accredited by SANAS (South African National Accreditation System).								
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	QAQC procedure has been described above.								
	The verification of significant intersections by either independent or alternative company personnel.									
Verification of sampling and assaying	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	No adjustments have been made to the assayed results. The assay results are received from the laboratory in pdf format and excel format. The excel form is imported into the Minxcon excel database. These are checked by the senior geologist. The assay certificates are stored in the project folder.								
	The use of twinned holes. Accuracy and quality of surveys used to	No twinning has been undertaken to date.								
Location of data points	locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drillhole collar positions are recorded by handheld Garmin GPS. The drillholes will be surveyed in at a later stage.								
	Specification of the grid system used.	The coordinate system used is LO31.								

	SECTION 1: SAM	IPLING TECHNIQUES AND DATA
Criteria	Explanation	Detail
	Quality and adequacy of topographic control.	Regional three-dimensional (3D) topography was constructed from regional surface contours and Shuttle Radar Topography Mission (SRTM) data. The surface was trimmed 300–500 m beyond the Project perimeter.
	Data spacing for reporting of Exploration Results.	The final drillhole spacing will be approximately 350 m. The drilling completed to date or in progress has a wider spacing to get a better understanding of the larger structural domains of the project.
Data spacing and distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Geological continuity is based on the knowledge of the surrounding area and 3D model constructed from historical data. The 24 of the 26 completed drillholes to date have intersected the UG2 which is confirming the position of the UG2 reef. Of the 12 drillholes expected to intersect the MR nine have intersected the reef and two have been faulted.
	Whether sample compositing has been applied.	The 20cm (or larger) samples are composited to obtain the weighted average of the entire intersection.
Orientation of data in	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling	The drillholes are vertical drillholes and intersect the reef close to right angles. The sample is therefore unbiased. If the reef is faulted it will be noted and if the reef intersection is not representative, it will not be used in Mineral Resource estimations.
relation to geological structure	orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No sampling bias will be introduced based on the drilling orientation as they are close to perpendicular.
Sample security	The measures taken to ensure sample security.	Samples are only handled by the drilling contractor and the Minxcon geological staff. There is a strict chain of custody that is followed from the time the core leaves the drill site to the time the sample is received by the laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits have been undertaken on the drilling to date.

	TING OF EXPLORATION RESULTS							
Criteria	Explanation	Detail						
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	A Preferent Prospecting Right LP002PPR was granted to the Bengwenyama Tribe's investment vehicle, Miracle Upon Miracle Investments (Pty) Ltd in 2015 over the farms Eerstegeluk 322 KT and Nooitverwacht 324 KT. This was renewed in early 2021 and is valid until February 2024. The Right covers all elements of potential economic interest.						
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The right is valid until February 2024.						
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Drilling was undertaken by Rustenburg Platinum Mines from 1966 to 1985. Trojan exploration completed drilling on Eerstegeluk between 1990 and 1993. Drilling prior to 1994 was not used as part of this Mineral Resource estimate (MRE) due to the incomplete nature or availability of the drillhole data. Nkwe completed drillholes in 2007– 2008. This drilling supports the MRE. Reconnaissance mapping has been completed by previous operators.						
Geology	Deposit type, geological setting and style of mineralisation.	The target UG2 and Merensky reefs occur within the Upper Critical Zone of the Rustenburg Layered Suite of the BC. These reefs are laterally continuous for tens to hundreds of kilometres. The UG2 comprises mineralised chromitite, whereas the Merensky Reef is defined as the mineralised pyroxenitic zone between upper and lower chromitite stringers. The BC is the world's largest igneous intrusion and						

	SECTION 2: REPOR	RTING OF EXPLORATION RESULTS										
Criteria	Explanation		-		1	.,	Deta				<u> </u>	
		also the largest global repository of PGEs and chromitite. Both reefs stratiform with relatively minor disruptive structural features and										
			ement d									
	A summary of all information	BHID	Date Started	Date Completed	Easting	Northing	Elevation	From (m)	To (m)	Drilled Metres	Comment	
	material to the understanding of the exploration results including a	E019 E019a	23-Aug-22 06-Sep-22	05-Sep-22 05-Oct-22	-86451 -86447	-2736870 -2736870	804	0.00	32.42 323.77	32.42 323.77	Abandoned, stuck drill rods EOH. completed	
	tabulation of the following	E019a	26-Aug-22	19-Oct-22	-85837	-2730870	774	0.00	206.72	206.72	EOH, completed	
	information for all Material drillholes:	E060_D1	23-Nov-22 26-Aug-22	28-Nov-22 02-Sep-22	-85837 -86184	-2740292 -2740002	635 777	139.00	185.53 120.34	46.53	EOH, completed EOH, completed, extended to	
	* easting and northing of the drillhole collar	E062_D1	26-Aug-22 07-Sep-22	02-Sep-22 08-Sep-22	-86184	-2740002	759	18.30	120.34 34.92	120.34	UG1 for stratigraphy Deflection completed, faulted UG2	
	* elevation or RL (Reduced Level –	E062_D2	09-Sep-22	10-Sep-22 05-Oct-22	-86184 -86127	-2740002 -2740386	764	13.30	33.00 158.25	19.70	Deflection completed, faulted UG2 EOH, completed	
	elevation above sea level in metres)	E058 E033	12-Sep-22 07-Sep-22	15-Oct-22	-85930	-2737823	786	0.00	261.58	261.58	EOH, completed	
	of the drillhole collar * dip and azimuth of the hole	E028 E004 E004 D1	07-Oct-22 14-Oct-22 19-Nov-22	24-Oct-22 15-Nov-22 24-Nov-22	-86764 -87547 -87547	-2736873 -2734952 -2734952	806 839 382	0.00 0.00 457.00	383.75 524.50 518.75	383.75 524.50 61.75	EOH, completed EOH, completed Deflection completed	
	* down hole length and interception	E030 E025	26-Oct-22 18-Oct-22	05-Dec-22 09-Nov-22	-87118 -85963	-2737704 -2737487	801 796	0.00	413.75 267.58	413.75 267.58	EOH, completed EOH, completed	
	depth	E037 E049	13-Oct-22 21-Oct-22	02-Nov-22 19-Nov-22	-86264 -85949	-2738274 -2739599	776	0.00	282.45 322.75	282.45 322.75	EOH, completed EOH, completed, extended to	
	* hole length.	E031 E044	07-Nov-22 12-Nov-22	22-Nov-22 14-Dec-22	-87054	-2737306	802	0.00	423.22 263.73	423.22 263.73	UG1 for stratigraphy EOH, completed EOH, completed	
		E016 E007	28-Nov-22 28-Nov-22	14-Dec-22 10-Dec-22	-87174 -87014	-2736679 -2735562	815 826	0.00	325.68 422.80	454.68 422.80	EOH, completed EOH, completed	
		E064 E071	29-Nov-22 07-Dec-22	06-Dec-22 12-Dec-22	-84845 -85047	-2738001 -2738333	750 750	0.00	166.40 188.80	166.40 188.80	EOH, completed EOH, completed	
Drillhole		E065	08-Dec-22	15-Dec-22	-85571	-2738426	764	0.00	239.75	239.75	EOH, completed	
Information		E001 E015	12-Jan-23 12-Jan-23	06-Feb-23 19-Jan-23	-87995 -86172	-2734357 -2736461	858 802	0.00	554.75 298.72	554.75 298.72	EOH, completed EOH, completed	
		E020 E041	11-Jan-23 13-Jan-23	21-Jan-23 06-Feb-23	-86725 -86452	-2737285 -2738758	798 770	0.00	350.75 258.77	350.75 258.77	EOH, completed EOH, completed	
		E067 E013	12-Jan-23 23-Jan-23	25-Jan-23 01-Feb-23	-85465	-2739534 -2736523	762	0.00	306.45 327.28	306.45	EOH, completed	
		E013 E024	23-Jan-23 23-Jan-23	01-Feb-23 29-Jan-23	-86435	-2736523	809	0.00	327.28	284.75	EOH, completed	
		E069	27-Jan-23		-85313	-2740516	763	0.00	284.65	284.65	Drilling in progress	
		E027 E014	01-Feb-23 07-Feb-23	21-Feb-23	-86331 -86588	-2737558 -2736213	788 811	0.00	290.75 106.10	290.75 106.10	EOH, completed Drilling in progress	
		E052 E001D1	21-Feb-23		-86337 -87998	-2739349 -2734368	775 350	0.00	3.55 0'	3.55	Drilling in progress Set-up	
				wara dr	illad (00 doo	rooo	Doo	finta	8668	n dontha ara in	
		All drillholes were drilled -90 degrees. Reef intersection depths are in appendix 1 of the press release.										
	If the exclusion of this information is											
	justified on the basis that the information is not Material and this											
	exclusion does not detract from the	N/A										
	understanding of the report, the											
	Competent Person should clearly explain why this is the case.											
	In reporting Exploration Results,											
	weighting averaging techniques,											
	maximum and/or minimum grade truncations (e.g. cutting of high grades)	No updated Mineral Resource or Exploration Target has been completed utilising this new drilling data.										
	and cut-off grades are usually Material											
	and should be stated.											
	Where aggregate intercepts											
Data aggregation	incorporate short lengths of high grade results and longer lengths of low grade											
methods	results, the procedure used for such	No ac	gregatio	n of da	ta hac	boon	done	at th	nie eta	200		
	aggregation should be stated and	NO ag	gregatic	n oi ua	ta nas	been	uone	aru	113 310	age.		
	some typical examples of such aggregations should be shown in											
	detail.											
	The assumptions used for any	N		1 4 1.								
	reporting of metal equivalent values should be clearly stated.	INO ME	tal equiv	aient h	as de	en rep	orted.					
	If the geometry of the mineralisation											
Relationship	with respect to the drillhole angle is											
between	known, its nature should be reported. If it is not known and only the down										s. The drillholes	
mineralisation widths and intercept	hole lengths are reported, there should		lled at -9								o be ould be minimal.	
lengths	be a clear statement to this effect (e.g.	appio	anatery	iz ueg		I NEI EI	ວາອ, ແ	ie ul	nerel	100 5110		
-	'down hole length, true width not known').											
	Appropriate maps and sections (with											
	scales) and tabulations of intercepts	A map	of the d	rillhole	positi	ons is	includ	ed ir	n the	press I	releases. A	
Diagrams	should be included for any significant discovery being reported These should	prelim	inary stra	atigrapł	nic col	umn h	as bee	en c	omple	eted fo	r the project	
	include, but not be limited to a plan	(previo	ous pres Iral block	s releas	ses). A	A section	on has	s not	beer	n inclue	ded as the larger	
	view of drillhole collar locations and	รแน่ต์ไ		s are s	un pe	ny del	ennin	eu v	יונו נו	ie uriili	ng.	
	appropriate sectional views. Where comprehensive reporting of											
Polonad	all Exploration Results is not	Deef	interre	tion de	nthe f	or oll 4		hal	۰. ۱۰.	10 h	n ronorted :-	
Balanced reporting	practicable, representative reporting		intersec able belo		pins f	or all th	ie arill	nole	es nav	ieed ev	n reported in	
B	of both low and high grades and/or widths should be practiced to avoid											
	widths should be practiced to avoid											

Criteria		ting of	F EXP	LOR	ATION	RESULTS				
	Explanation						etail			
	misleading reporting of Exploration	Drilling			Merensky I Intersection				UG2 Intersection	Reef
	Results.	BH ID	From (m)	To (m)	Width (m)	Comment Highly weathered & friable,	From (m)	To (m)	Width (m)	Comment
		E019	20.25	22.45	2.20	highly weathered & mable, inconclusive Highly weathered & friable,	•	-	•	Hole stopped short
		E019a	19.55	22.35	2.80	inconclusive	315.85	316.61	0.76	Complete intersection
		E060	-	•	-	No MR expected - East of MR sub outcrop	-	-		Faulted?
		E060_D1	-	-	-	No MR expected - East of MR sub outcrop	178.78	179.29	0.51	Complete intersection
		E062	-	-	-	No MR expected - East of MR sub outcrop	31.27	32.30	1.03	Complete intersection, moderately weathered
		E062_D1	-	-	-	No MR expected - East of MR sub outcrop	31.45	32.27	0.82	Moderately weathered & faulted. Incomplete intersection. Core loss.
		E062_D2	-	-	-	No MR expected - East of MR sub outcrop	31.16	31.56	0.40	Moderately weathered & faulted. Incomplete intersection. Core loss.
		E058	-		-	No MR expected - East of MR sub outcrop	140.88	141.29	0.41	Complete intersection
		E033	-			No MR expected - East of MR sub outcrop	253.62	254.25	0.63	Complete intersection
		E028 E004	66.70	68.66 212.90	1.96 2.13	Complete intersection Complete intersection	373.26	373.79	0.53	Complete intersection Poorly developed UG2
		E004 D1	143.00	. 144.68	- 1.68	Deflection below MR Complete intersection	515.83 409.55	516.52 410.07	0.69	Poorly developed UG2 Complete intersection
		E025	-	-	-	No MR expected - East of MR sub outcrop	260.42	261.32	0.90	Complete intersection
		E037				No MR expected - East of MR		-		Not present / Pothole
		E049				sub outcrop No MR expected - East of MR				Faulted
		E031	122.40	124.29	1.89	sub outcrop Complete intersection	416.57	417.19	0.62	Complete intersection
		E044	-		-	No MR expected - East of MR sub outcrop	258.75	259.42	0.67	Complete intersection
		E016 E007	100.38	- 102.54	- 2.16	Faulted Complete intersection	449.24 417.42	450.01 418.12	0.77	Complete intersection Complete intersection
		E064	-	-		No MR expected - East of MR sub outcrop	156.19	157.05	0.86	Complete intersection
		E071	-	-	-	No MR expected - East of MR sub outcrop	180.04	180.73	0.69	Complete intersection
		E065	-			No MR expected - East of MR	231.81	232.50	0.69	Complete intersection
		E001	259.78	261.44	1.66	sub outcrop Complete intersection No MR expected - East of MR	548.07	549.21	1.14	Complete intersection
		E015	-		-	sub outcrop	291.89	292.63	0.74	Complete intersection
		E020 E041	54.20	54.57	0.37	Faulted No MR expected - East of MR	342.90 250.95	343.56 251.60	0.65	Complete intersection Complete intersection
		E067				sub outcrop No MR expected - East of MR	299.70	300.20	0.50	Complete intersection
						sub outcrop Highly weathered & friable, inconclusive (core loss & No				Competer interaction
		E013	12.00	18.62	6.62	inconclusive (core loss & No stringers)	321.26	321.76	0.50	Complete intersection
		E024	-		-	No MR expected - East of MR sub outcrop	278.77	279.26	0.49	Complete intersection
		E069				No MR expected - East of MR sub outcrop		-		UG2 expected ~ 240m
		E027	-			No MR expected - East of MR sub outcrop	284.47	285.04	0.57	Complete intersection
		E014	37.28	39.41	2.13	Complete intersection				UG2 expected ~ 327m
		E052 E001D1			-	No MR expected - East of MR sub outcrop Deflection below MR		-		UG2 expected ~ 126m UG2 expected ~ 548m
	results; geochemical survey results;				caluies	that could be	e exp	pecte	ed.	
ther substantive ploration data	bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Eerste flown a resider	geluk it a he ntial ai	kilo 322 ight eas	metres KT and betwee	flown was 1, Nooitverwac n 25 m and 8 average hei	425 ht 32 30 m	lkm c 24 K ⁻ due	over the F with t to the t	e farms he survey being opography and itely 35 m to 40 r

	SECTION 2: REPOR	TING OF EXPLORATION RESULTS								
Criteria	Explanation	Detail								
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	S73000 M S73000 M S70000								