

30 March 2023

Resource estimate for Far East Block discovery underway; results from 23 UG2 intersections average 9.28g/t (6PGE+Au)

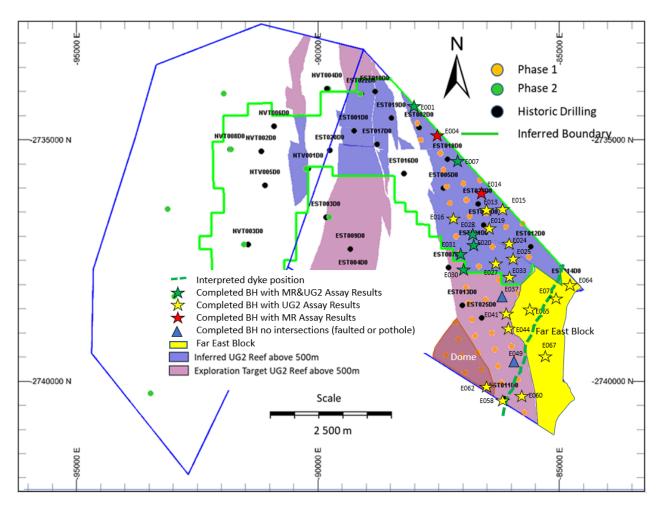
Highlights:

- All assay results for drilling completed to-date at the Bengwenyama project have been received.
- Assay results for 23 UG2 intersections have returned an average 3PGE+Au grade of 7.67g/t and 6PGE+Au of 9.28g/t over 72cm, which continues to confirm the JORC-2012 Inferred Mineral Resource estimate.
- With additional assays for the Merensky Reef (MR), the MR now averages a 3PGE+Au grade of 2.45 g/t and 6PGE+Au grade of 2.72 g/t over a width of 195 cm.
- Resource estimate underway for new UG2 discovery, the Far East Block (FEB).
- Average depth below surface of 217m makes the FEB potentially accessible from a planned decline
- Drilling has re-commenced following a temporary suspension in early March.
- Continuation of Phase 1, 63-hole drill programme targeting upgrade for a portion of existing Inferred 18.8Moz (4E) resource to Indicated status, ahead of planned Pre-Feasibility Study .

Southern Palladium (ASX:SPD and JSE:SDL), 'Southern Palladium' or 'the Company') is pleased to announce assay results for the entirety of the drill programme completed to-date across the MR and UG2 reefs at the Bengwenyama Platinum Group Metal (PGM) project, located on the Eastern Limb of the world class Bushveld Complex, South Africa.

Managing Director Johan Odendaal, said: "The latest drilling results continue to confirm the consistency of the grade and continuity of the UG2 reef, and both the grade and reef width correlates well with the compliant Inferred Mineral Resource. Latest assays from the four intersections in the Far East Block also show consistent results and this area has significant potential for future resource upgrades. The geological and estimation model update process has started, and an interim Mineral Resource update should be finalised shortly. Drilling has once again commenced on the Bengwenyama project with the full support of the Community Leadership. Our plan is still to deliver our milestones within the projected timeframe."

Progressive UG2 and Merensky Reef Results


A total of 23 assay results for the UG2 Reef have now been received from the laboratory (refer Appendix 1). These now average a 3PGE+Au grade of 7.67 g/t and 6PGE+Au of 9.28 g/t over 72 cm intersection width (refer Table 1). The drilling results continue to confirm the consistency of the grade and continuity of the UG2 reef and continue to correlate well with the compliant Inferred Mineral Resource 3PGE+Au grade in the MRE of 7.7 g/t over 71 cm.

Additional Merensky Reef (MR) assay results have also continued to confirm the continuity of the MR (refer Table 2). The observed MR grades of 2.45 g/t (3PGE+Au) are slightly lower than the Inferred Mineral Resource grade of 2.96 g/, however the sampled area of the MR to date is however only a small portion of the entire MR area. Therefore, the MR grade could still align closer to the expected Inferred Mineral Resource grade of 2.96 g/t, as is emerging for the UG2 reef.

Additional resource potential within the newly discovered Far East Block

There are now four intersections (E064, E065, E067 and E071) in the newly discovered Far East Block (FEB) with an average width of 73 cm and a 6PGE+Au grade of 7.38 g/t (*refer Figure 1*). The depth of the UG2 in the Far East Block ranges from 156m to 300m below surface with an average of 217m.

The Far East Block, which is seen as upside potential to the JORC (2012) Inferred Mineral Resource, has an estimated surface area of approximately 2.75 km² with an average reef width of 73 cm (average of the four intersections). The geological modelling and resource estimation has started, and an interim Mineral Resource for the project including the FEB should be finalised in April/May.

Figure 1: Location of Completed Drillholes

Resumption of drill programme

Drilling has now resumed at the project following unlawful stoppages early in March. The Company is working closely with the Bengwenyama Community leadership and is receiving the necessary support from both the Bengwenyama-ya-Maswazi Traditional Council and Royal Family. During this time the Bengwenyama Leadership held several meetings to inform the local community about the stoppages. At all the meetings held it received full support from the majority of attendees to continue with the exploration programme and development of the project.

Ongoing assay results from the Phase 1, 63-hole diamond drill programme at Bengwenyama will contribute to a planned upgrade of a portion of the Inferred 18.8Moz (4E) resource to Indicated status and the advancement of a Pre-Feasibility Study, which was initiated during the March quarter (*refer ASX Announcement 24 January 2023*).

	Tuble 1. Summury of the Progressive OG2 need Assay nesants														
BHID	From (m)	To (m)	UG2 sampled width (cm)	Pt (g/t)	Pd (g/t)	Rh (g/t)	lr (g/t)	Os (g/t)	Ru (g/t)	Au (g/t)	3PGE+Au (g/t)	6PGE+Au (g/t)	Ni (%)	Cu (%)	Cr ₂ O ₃ (%)
E062	31.25	32.30	105	3.80	3.57	0.88	0.32	0.14	1.43	0.08	8.33	10.22	0.15	0.03	29.56
E058	140.86	141.31	45	4.69	5.64	0.82	0.26	0.19	1.46	0.22	11.37	13.28	0.23	0.01	39.37
E019A	315.83	316.64	81	4.25	4.19	0.79	0.26	0.15	1.31	0.13	9.36	11.09	0.16	0.03	30.87
E033	253.60	254.25	65	4.21	5.00	0.84	0.28	0.16	1.32	0.17	10.21	11.98	0.16	0.02	32.64
E028	373.24	373.81	57	3.40	2.93	0.65	0.23	0.15	1.18	0.05	7.03	8.59	0.13	0.00	31.07
E031	416.55	417.22	67	3.30	3.73	0.63	0.19	0.13	1.09	0.16	7.81	9.23	0.22	0.06	29.36
E025	260.40	261.32	92	3.53	3.43	0.85	0.24	0.16	1.14	0.10	7.91	9.46	0.18	0.04	25.86
E071	179.98	180.75	77	2.94	2.59	0.59	0.19	0.13	0.97	0.12	6.24	7.54	0.16	0.04	28.12
E064	156.17	157.07	90	2.36	1.53	0.49	0.16	0.11	0.83	0.02	4.40	5.51	0.12	0.01	26.50
E030	409.53	410.09	56	4.05	5.20	0.96	0.31	0.20	1.49	0.19	10.40	12.40	0.19	0.04	32.46
E007	417.40	418.14	74	3.98	3.31	0.91	0.29	0.19	1.43	0.08	8.29	10.20	0.16	0.04	31.11
E060D1	178.76	179.31	55	4.14	3.49	1.02	0.33	0.23	1.51	0.06	8.72	10.80	0.14	0.02	31.95
E016	449.22	450.03	81	3.18	2.09	0.71	0.22	0.15	1.08	0.03	6.01	7.46	0.15	0.02	29.13
E044	258.73	259.44	71	2.94	3.10	0.59	0.20	0.15	1.08	0.13	6.76	8.19	0.15	0.03	33.63
E065	231.79	232.52	73	3.49	3.44	0.83	0.25	0.17	1.27	0.12	7.87	9.57	0.16	0.04	28.97
E015	291.87	292.65	78	3.14	3.69	0.69	0.24	0.18	1.20	0.19	7.72	9.35	0.17	0.05	32.95
E020	342.88	343.58	70	2.99	3.07	0.66	0.22	0.15	1.05	0.18	6.90	8.32	0.15	0.05	23.98
E067	299.69	300.22	53	2.98	2.35	0.55	0.21	0.15	1.04	0.03	5.92	7.32	0.13	0.01	31.88
E024	278.75	279.28	53	3.46	4.45	0.76	0.24	0.17	1.20	0.22	8.89	10.49	0.16	0.02	32.76
E013	321.24	321.78	54	4.09	3.69	0.82	0.27	0.19	1.33	0.11	8.70	10.49	0.16	0.03	33.23
E041	250.93	251.62	69	3.76	2.92	0.83	0.27	0.18	1.25	0.08	7.58	9.28	0.21	0.02	28.97
E001	548.05	549.23	118	2.83	2.61	0.58	0.21	0.15	1.01	0.10	6.12	7.49	0.17	0.09	23.90
E027	284.45	285.06	61	3.79	3.11	0.82	0.29	0.20	1.39	0.09	7.81	9.68	0.15	0.02	31.56
Wei	ighted Aver	age	72	3.48	3.34	0.74	0.25	0.16	1.20	0.11	7.67	9.28	0.16	0.03	29.86
(3PGE+Au)	Prill Split ((%)	45.3	43.5	9.7				1.5	100				
(6PGE+Au)	Prill Split ((%)	37.5	36.0	8.0	2.6	1.7	13.0	1.2		100			

Table 1: Summary of the Progressive UG2 Reef Assay Results

Table 2: Summary of the Progressive Merensky Reef Assay Results

BHID	From (m)	To (m)	MR sampled width (cm)	Pt (g/t)	Pd (g/t)	Rh (g/t)	lr (g/t)	Os (g/t)	Ru (g/t)	Au (g/t)	3PGE+Au (g/t)	6PGE+Au (g/t)	Ni (%)	Cu (%)
E028	66.68	68.68	200	1.49	0.47	0.10	0.03	0.03	0.21	0.08	2.14	2.41	0.09	0.02
E004	210.75	212.92	217	1.15	0.44	0.06	0.02	0.02	0.14	0.07	1.73	1.92	0.10	0.02
E030	142.98	144.77	179	1.66	0.63	0.13	0.04	0.03	0.24	0.15	2.56	2.88	0.13	0.04
E031	122.38	124.31	193	1.69	0.91	0.10	0.03	0.03	0.22	0.16	2.86	3.15	0.14	0.07
E007	100.36	102.56	220	2.15	0.89	0.12	0.04	0.04	0.24	0.11	3.27	3.59	0.19	0.06
*E020	54.18	55.39	121	2.11	1.15	0.12	0.04	0.04	0.23	0.37	3.76	4.06	0.26	0.10
E001	259.8	261.66	186	1.07	0.46	0.14	0.03	0.03	0.19	0.05	1.71	1.96	0.10	0.02
E014	37.26	39.68	242	1.40	0.49	0.10	0.03	0.03	0.19	0.11	2.11	2.35	0.10	0.03
Weigh	ted Avera	ge	195	1.57	0.65	0.11	0.03	0.03	0.21	0.13	2.45	2.72	0.13	0.04
(3PC	GE+Au) P	rill Split (%	%)	63.9	26.6	4.4				5.1	100			
(6PC	GE+Au) P	rill Split (%	%)	57.6	24.0	3.9	1.2	1.1	7.6	4.6		100		

*Red Italic figures – Possible incomplete intersection with a potentially faulted bottom contact intersection.

This announcement has been approved for release by the Board of Southern Palladium Limited.

About Southern Palladium:

Southern Palladium Limited (ASX:SPD, JSE:SDL) is a dual-listed platinum group metal (PGM) company developing the advanced Bengwenyama PGM project, particularly rich in palladium/rhodium, in South Africa. The project is located on the Eastern Limb of the Bushveld Complex, which contains more than 70% of the world's known Platinum Group Metal (PGM) Resources.

With its 70% stake in the project, the Company's focus will be on the delivery of a Pre-Feasibility study and Mining Right application through a geophysical survey that has recently been completed, a twophase diamond drill programme which has commenced in August 2022 as well as various technical studies to be completed.

A major development opportunity in the global PGM market, previous exploration at Bengwenyama has already delivered a JORC 2012-compliant Inferred Mineral Resource of 18.8Moz within two ore horizons – the UG2 chromitite and Merensky Reef.

In addition, an assessment by mining industry consultants CSA Global assessed the total resource potential of Bengwenyama at between 134–201Mt at a grade of 3.5–5.2 (3 PGE + Au g/t). The Company is led by an experienced on-ground management team including some of South Africa's most high-profile mining industry executives.

JORC Statement

The information in this report that relates to Mineral Resources at the Bengwenyama Project is based on details originally reported in the Independent Technical Assessment Report (ITAR) No. R246.2021 prepared by CSA Global dated 19 April 2022 contained in the Company's Prospectus and Pre-Listing Statement dated 22 April 2022. The information in the ITAR that relates to Technical Assessment of the Mineral Assets, Exploration Targets, or Exploration Results is based on information compiled and conclusions derived by Dr Brendan Clarke, a Partner and an employee of CSA Global. The information in the ITAR that relates to Mineral Resources is based on work undertaken by Anton Geldenhuys, a Principal Consultant and employee of CSA Global. The Prospectus containing the ITAR can be found on the Company's website at: https://www.southernpalladium.com/site/investor-centre/prospectus

The Company confirms that it is not aware of any new information or data that materially affects the information included in the ITAR. The Company also confirms that all material assumptions and technical parameters underpinning the estimates in the ITAR continue to apply and have not materially changed. In addition, the Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified.

Competent Person Statement

The scientific and technical information contained in this announcement has been reviewed, prepared and approved by Mr Uwe Engelmann (BSc (Zoo. & Bot.), BSc Hons (Geol.), Pr.Sci.Nat. No. 400058/08, FGSSA). Mr Engelmann is a director of Minxcon (Pty) Ltd and a member of the South African Council for Natural Scientific Professions, and has sufficient experience relevant to the styles of mineralisation and activities being undertaken to qualify as a Competent Person, as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Engelmann has a beneficial interest in Southern Palladium through a shareholding in Nicolas Daniel Resources Proprietary Limited.

For further information, please contact:

Johan Odendaal Managing Director Southern Palladium Phone: +27 82 557 6088 Email: johan.odendaal@southernpalladium.com

Media & investor relations inquiries: Sam Jacobs, Six Degrees Investor Relations: +61 423 755 909

Follow <u>@SouthernPalladium</u> on Twitter

Follow <u>Southern Palladium</u> on LinkedIn

Appendix 1. Reef Intersection Summary for Bengwenyama Drillholes

Drilling			Merensky R	eef			UG2 Reef	
BH ID	From (m	To (m)	Intersection Width (m)	Comment	From (m	To (m)	Intersection Width (m)	Comment
E019	20.25	22.45	2.20	Highly weathered & friable, inconclusive	-	-	-	Hole abandoned
E019A	19.55	22.35	2.80	Highly weathered & friable, inconclusive	315.85	316.61	0.76	Complete intersection
E060	-	-	-	No MR expected – East of MR subcrop	-	-	-	Core loss
E060_D1	-	-	-	No MR expected – East of MR subcrop	178.78	179.29	0.51	Complete intersection
E062	-	-	-	No MR expected – East of MR subcrop	31.27	32.30	1.03	Complete intersection, moderately weathered
E062_D1	-	-	-	No MR expected – East of MR subcrop	31.45	32.27	0.82	Moderately weathered & faulted. Incomplete intersection. Core loss.
E062_D2	-	-	-	No MR expected – East of MR subcrop	31.16	31.56	0.40	Moderately weathered & faulted. Incomplete intersection. Core loss.
E058	-	-	-	No MR expected – East of MR subcrop	140.88	141.29	0.41	Complete intersection
E033	-	-	-	No MR expected – East of MR subcrop	253.62	254.25	0.63	Complete intersection
E028	66.70	68.66	1.96	Complete intersection	373.26	373.79	0.53	Complete intersection
E004	210.77	212.90	2.13	Complete intersection	517.33	517.57	0.24	Poorly developed UG2
E004_D1	-	-	-	Deflection below MR	515.83	516.52	0.69	Poorly developed UG2
E030	143.00	144.68	1.68	Complete intersection	409.55	410.07	0.52	Complete intersection
E025	-	-	-	No MR expected – East of MR subcrop	260.42	261.32	0.90	Complete intersection
E037	-	-	-	No MR expected – East of MR subcrop	-	-	-	Not present / Pothole?
E049	-	-	-	No MR expected – East of MR subcrop	-	-	-	Faulted
E031	122.40	124.29	1.89	Complete intersection	416.57	417.19	0.62	Complete intersection
E044	-	-	-	No MR expected – East of MR subcrop	258.75	259.42	0.67	Complete intersection
E016	-	-	-	Faulted	449.24	450.01	0.77	Complete intersection
E007	100.38	102.54	2.16	Complete intersection	417.42	418.12	0.70	Complete intersection
E064	-	-	-	No MR expected – East of MR subcrop	156.19	157.05	0.86	Complete intersection
E071	-	-	-	No MR expected – East of MR subcrop	180.04	180.73	0.69	Complete intersection
E065	-	-	-	No MR expected – East of MR subcrop	231.81	232.50	0.69	Complete intersection
E001	259.78	261.44	1.66	Complete intersection	548.07	549.21	1.14	Complete intersection
E015	-	-	-	No MR expected – East of MR subcrop	291.89	292.63	0.74	Complete intersection

E020	54.20	54.57	0.37	MR faulted	342.90	343.56	0.66	Complete intersection
E041	-	-	-	No MR expected – East of MR subcrop	250.95	251.60	0.65	Complete intersection
E067	-	-	-	No MR expected – East of MR subcrop	299.70	300.20	0.50	Complete intersection
E013	12.00	18.62	6.62	Highly weathered & friable, inconclusive? (core loss)	321.26	321.76	0.50	Complete intersection
E024	-	-	-	No MR expected – East of MR subcrop	278.77	279.26	0.49	Complete intersection
E069*	-	-	-	No MR expected – East of MR subcrop	-	-	-	UG2 expected ~ 240m
E027	-	-	-	No MR expected – East of MR subcrop	284.47	285.04	0.57	Complete intersection
E014*	37.28	39.68	2.40	Complete intersection	-	-	-	UG2 expected ~ 327m
E052*	-	-	-	No MR expected – East of MR subcrop	-	-	-	UG2 expected ~ 126m

Red italic with asterix are drillholes in progress.

Appendix 2. JORC Checklist – Table 1 Assessment and Reporting Criteria

		MPLING TECHNIQUES AND DATA						
Criteria	Explanation	Detail						
	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to	20 cm samples are taken within the reef horizon unless there is a lithological reason to deviate from this. A single sample is also taken in the hanging wall and footwall to test for mineralisation in the direct waste rock. The samples are split with a core saw and one half is submitted to the laboratory and the other half keep in the core tray.						
	ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	The core is orientated in such a way that the two halves are equal.						
Sampling techniques	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	The sampling methodology is standard and as per industry practice in the Bushveld Complex (BC). The samples are 20 cm in length and are split into two equal halves with one half being submitted for analysis. The core size starts as HQ (10 m to 50 m) but is NQ by the time the reef is intersected.						
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc.).	The drillholes start with HQ (for approximately 10-50 m) in the weathered zone but are then drilled NQ once in the fresher material. The drill rigs being utilised have been the CS 1500, Delta 520 and a smaller Longyear 44. The drill contractor is Geomech Africa.						
	Method of recording and assessing core and chip sample recoveries and results assessed.	Initially the core was scanned in with the software ScanIT which scans the core with high resolution photos and the geologists reconcile the depths and core losses per 3 m run. The Core recoveries and RQD are then calculated for the drillhole. ScanIT has however been discontinued and the core is now photographed and the core recovery and RQD is calculated manually by the geological assistants.						
Drill sample recovery	Measures taken to maximise sample recovery and ensure representative nature of the samples.	The geologist informs the drilling supervisor at what depth the reef is expected so that they can take extra precautions around the anticipated reef depth. The core recoveries are measured per 3 m run and if there is excessive core loss in the reef horizon it is marked as a non-representative sample and will not be used in the resource estimation process.						
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Samples have been submitted to the ALS laboratory in Johannesburg, but there is only limited data available at this stage, so this has not been checked yet. The core recoveries for the intersections however all have good core recoveries besides the faulted intersections.						
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	The core was initially scanned into ScanIT software which produced high resolution images. This has however been discontinued. The logging is conducted on paper log sheets or tablets at the core with dropdown menus. Legends have been set up in excel that cover the necessary detailed required for Mineral Resource estimation. Alpha angles and structure detail is also observed and logged. The beta angle is not measured as the core is not orientated but the downhole televiewer survey supplies structural orientation information which is incorporated into the logs.						
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	Core logging is qualitative and utilises excel spreadsheets on tablets.						
	The total length and percentage of the relevant intersections logged.	The total drillhole is geologically logged and photographed and the televiewer survey is conducted from 100 m above the reef horizon for additional structural information.						
Sub-sampling	If core, whether cut or sawn and whether quarter, half or all core taken.	The core is cut in two equal halves for sampling and storage purposes.						
techniques and sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	This project only makes use of core drilling.						

	SECTION 1: SAM	IPLING TECHNIQUES AND DATA							
Criteria	Explanation	Detail							
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The sample preparation code at ALS is PREP-31H which has the following procedure: - Login of samples into the system, weighing, fine crushing of entire sample to 70% - 2 mm, split off 500 g and pulverize split to better than 85% passing 75 microns.							
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	The QAQC sequence is as follows: - If the batch is less than 20 samples the batch starts and ends with a blank and a CRM and duplicate are inserted into the sample stream. If the batch is great than 20 samples then the batch starts and ends with a blank and every tenth sample is either a CRM, duplicate or blank. This equates to between 20% and 10% QAQC samples.							
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	The sampling of the reef is reef material only except for the first and lat sample of the reef as it will have 2 cm of hanging wall or footwall materia to ensure the entire mineralisation is captured. This 2 cm dilution will be calculated into the reef width. The hanging wall and footwall are sample separately to the reef. Hence the reef samples are representative of the <i>situ</i> reef horizon. Requested duplicates are pulp duplicates and the CRW are material from the UG2 and MR from African Mineral Standards (AMIS							
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The reef horizon is sampled in 20 cm increments so that the grade distribution can be observed if a mining cut is required. The UG2 reef is approximately 70 cm wide and will have three to four samples which will be composited later. The MR is wider at around 200 cm and will have about ten individual samples to determine the grade distribution. These will also be composited later for Mineral Resource Estimation purposes. Hanging wall and footwall samples are also taken to check if there is any mineralisation in the direct surrounding waste rock.							
	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	and Fe. The MR will be assayed for the same except the Cr and Fe as							
Quality of assay data and laboratory tests		The ALS methods are as follows: - PGM-ICP23 - Pt, Pd, Au package using lead fire assay with ICP-AES fir 30 g nominal sample weight. Rh-ICP28 - Fire assay fusion using lead flux with Pd collector for determination by ICPAES. 10 g nominal sample weight. PGM-MS25NS - The Platinum Group Metals are separated from gangue material using the Nickel Sulphide Fire Assay procedure. A dissolution of the pulp with aqua regia, PGMs are determined by ICP-N ME-XRF26s - Analysis of Chromite ore samples by fused disc / XRF. method is suitable for the determination of major and minor elements in samples which require a high dilution digest such as Chromite of Elements that will be analysed are Cr, Cu, Ni, Fe and Co.							
		All methodologies are total.							
	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	All analytical work is undertaken by ALS Chemex South Africa (Pty) Ltd, located in Johannesburg, which is part of the ALS group. The South African laboratory is ISO 17025 accredited by SANAS (South African National Accreditation System).							
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	QAQC procedure has been described above.							
	The verification of significant intersections by either independent or alternative company personnel.								
Verification of sampling and assaying	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	No adjustments have been made to the assayed results. The assay results are received from the laboratory in pdf format and excel format. The excel form is imported into the Minxcon excel database. These are checked by the senior geologist. The assay certificates are stored in the project folder.							
	The use of twinned holes. Accuracy and quality of surveys used to	No twinning has been undertaken to date.							
Location of data points	locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drillhole collar positions are recorded by handheld Garmin GPS. The drillholes will be surveyed in at a later stage.							
	Specification of the grid system used.	The coordinate system used is LO31.							

SECTION 1: SAMPLING TECHNIQUES AND DATA								
Criteria	Explanation	Detail						
	Quality and adequacy of topographic control.	Regional three-dimensional (3D) topography was constructed from regional surface contours and Shuttle Radar Topography Mission (SRTM) data. The surface was trimmed 300–500 m beyond the Project perimeter.						
	Data spacing for reporting of Exploration Results.	The final drillhole spacing will be approximately 350 m. The drilling completed to date or in progress has a wider spacing to get a better understanding of the larger structural domains of the project.						
Data spacing and distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been	Geological continuity is based on the knowledge of the surrounding area and 3D model constructed from historical data. The 24 of the 26 completed drillholes to date have intersected the UG2 which is confirming the position of the UG2 reef. Of the 12 drillholes expected to intersect the MR nine have intersected the reef and two have been faulted. The 20cm (or larger) samples are composited to obtain the weighted						
Orientation of data in	applied. Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	average of the entire intersection. The drillholes are vertical drillholes and intersect the reef close to right angles. The sample is therefore unbiased. If the reef is faulted it will be noted and if the reef intersection is not representative, it will not be used in Mineral Resource estimations.						
Orientation of data in relation to geological structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No sampling bias will be introduced based on the drilling orientation as they are close to perpendicular.						
Sample security	The measures taken to ensure sample security.	Samples are only handled by the drilling contractor and the Minxcon geological staff. There is a strict chain of custody that is followed from the time the core leaves the drill site to the time the sample is received by the laboratory.						
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits have been undertaken on the drilling to date.						

	TING OF EXPLORATION RESULTS						
Criteria	Explanation	Detail					
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	A Preferent Prospecting Right LP002PPR was granted to the Bengwenyama Tribe's investment vehicle, Miracle Upon Miracle Investments (Pty) Ltd in 2015 over the farms Eerstegeluk 322 KT and Nooitverwacht 324 KT. This was renewed in early 2021 and is valid until February 2024. The Right covers all elements of potential economic interest.					
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The right is valid until February 2024.					
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Drilling was undertaken by Rustenburg Platinum Mines from 1966 to 1985. Trojan exploration completed drilling on Eerstegeluk between 1990 and 1993. Drilling prior to 1994 was not used as part of this Mineral Resource estimate (MRE) due to the incomplete nature or availability of the drillhole data. Nkwe completed drillholes in 2007– 2008. This drilling supports the MRE. Reconnaissance mapping has been completed by previous operators.					
Geology	Deposit type, geological setting and style of mineralisation.	The target UG2 and Merensky reefs occur within the Upper Critical Zone of the Rustenburg Layered Suite of the BC. These reefs are laterally continuous for tens to hundreds of kilometres. The UG2 comprises mineralised chromitite, whereas the Merensky Reef is defined as the mineralised pyroxenitic zone between upper and lower chromitite stringers. The BC is the world's largest igneous intrusion and					

	SECTION 2: REPOR	RTING OF EXPLORATION RESULTS										
Criteria	Explanation				1	.,	Deta		<u> </u>			
											e. Both reefs are ires and	
			ement d				apare		aotart	ai roato		
	A summary of all information	BH ID	Date Started	Date Completed	Easting	Northing	Elevation	From (m)	To (m)	Drilled Metres	Comment	
	material to the understanding of the exploration results including a	E019	23-Aug-22	05-Sep-22	-86451	-2736870	804	0.00	32.42	32.42	Abandoned, stuck drill rods	
	tabulation of the following	E019a E060	06-Sep-22 26-Aug-22	05-Oct-22 19-Oct-22	-86447 -85837	-2736870 -2740292	804 774	0.00	323.77 206.72	323.77 206.72	EOH, completed EOH, completed	
	information for all Material drillholes:	E060_D1	23-Nov-22	28-Nov-22	-85837	-2740292	635	139.00	185.53	46.53	EOH, completed EOH, completed, extended to	
	* easting and northing of the drillhole	E062 E062_D1	26-Aug-22 07-Sep-22	02-Sep-22 08-Sep-22	-86184 -86184	-2740002 -2740002	777	0.00	120.34 34.92	120.34	UG1 for stratigraphy Deflection completed, faulted UG2	
	collar * elevation or RL (Reduced Level –	E062_D2	09-Sep-22	10-Sep-22	-86184	-2740002	764	13.30	33.00	19.70	Deflection completed, faulted UG2	
	elevation above sea level in metres)	E058	12-Sep-22 07-Sep-22	05-Oct-22 15-Oct-22	-86127 -85930	-2740386 -2737823	777	0.00	158.25 261.58	158.25 261.58	EOH, completed	
	of the drillhole collar	E028 E004 E004 D1	07-Oct-22 14-Oct-22 19-Nov-22	24-Oct-22 15-Nov-22	-86764 -87547 -87547	-2736873 -2734952 -2734952	806 839	0.00 0.00 457.00	383.75 524.50	383.75 524.50 61.75	EOH, completed EOH, completed	
	* dip and azimuth of the hole * down hole length and interception	E030 E025	19-Ndv-22 26-Oct-22 18-Oct-22	24-Nov-22 05-Dec-22 09-Nov-22	-87118 -85963	-2737704 -2737487	382 801 796	0.00	518.75 413.75 267.58	413.75	EOH, completed EOH, completed EOH, completed	
	depth	E037	13-Oct-22	02-Nov-22	-86264	-2738274	776	0.00	282.45	282.45	EOH, completed EOH, completed, extended to	
	* hole length.	E049 E031	21-Oct-22 07-Nov-22	19-Nov-22 22-Nov-22	-85949 -87054	-2739599 -2737306	771 802	0.00	322.75 423.22	322.75 423.22	UG1 for stratigraphy EOH, completed	
		E044 E016	12-Nov-22 28-Nov-22	14-Dec-22 14-Dec-22	-86400 -87174	-2739001 -2736679	775 815	0.00	263.73 325.68	263.73 454.68	EOH, completed EOH, completed	
		E007 E064	28-Nov-22 29-Nov-22	10-Dec-22 06-Dec-22	-87014 -84845	-2738001	826 750	0.00	422.80 166.40	422.80	EOH, completed EOH, completed	
		E071 E065	07-Dec-22 08-Dec-22	12-Dec-22 15-Dec-22	-85047 -85571	-2738333 -2738426	750	0.00	188.80 239.75	188.80 239.75	EOH, completed EOH, completed	
Drillhole Information		E001 E015	12-Jan-23 12-Jan-23	06-Feb-23 19-Jan-23	-87995 -86172	-2734357 -2736461	858 802	0.00	554.75 298.72	554.75 298.72	EOH, completed EOH, completed	
mornation		E013 E020 E041	11-Jan-23 13-Jan-23	21-Jan-23 06-Feb-23	-86725 -86452	-2737285 -2738758	798	0.00	350.72 258.77	350.75 258.77	EOH, completed EOH, completed	
		E067	12-Jan-23	25-Jan-23	-85465	-2739534	762	0.00	306.45	306.45	EOH, completed	
		E013	23-Jan-23	01-Feb-23	-86435	-2736523	809	0.00	327.28	327.28	EOH, completed	
		E024 E069	23-Jan-23 27-Jan-23	29-Jan-23	-86104 -85313	-2737215 -2740516	800 763	0.00	284.75 284.65	284.75 284.65	EOH, completed Drilling in progress	
		E027	01-Feb-23	21-Feb-23	-86331	-2737558	788	0.00	290.75	290.75	EOH, completed	
		E014 E052	07-Feb-23 21-Feb-23		-86588 -86337	-2736213 -2739349	811 775	0.00	106.10 3.55	106.10 3.55	Drilling in progress Drilling in progress	
		E001D1			-87998	-2734368	350	508.00	0.	0.00	Set-up	
		All dr	illholes v	vere dr	illed -	90 deg	rees.	Ree	f inte		n depths are in	
		appe	ndix 1 o	f the pro	ess re	lease.					•	
	If the exclusion of this information is											
	justified on the basis that the information is not Material and this											
	exclusion does not detract from the	N/A										
	understanding of the report, the											
	Competent Person should clearly explain why this is the case.											
	In reporting Exploration Results,											
	weighting averaging techniques,	No updated Mineral Resource or Exploration Target has been										
	maximum and/or minimum grade								n Tar	get has	s been	
	truncations (e.g. cutting of high grades) and cut-off grades are usually Material	completed utilising this new drilling data.										
	and should be stated.											
	Where aggregate intercepts											
Data aggregation	incorporate short lengths of high grade											
methods	results and longer lengths of low grade results, the procedure used for such											
	aggregation should be stated and	No aggregation of data has been done at this stage.										
	some typical examples of such											
	aggregations should be shown in detail.											
	The assumptions used for any											
	reporting of metal equivalent values	No me	tal equiv	alent h	as be	en rep	orted.					
	should be clearly stated.	ļ										
	If the geometry of the mineralisation with respect to the drillhole angle is											
Relationship	known, its nature should be reported.	- , .								1	· .	
between mineralisation	If it is not known and only the down		ersectio led at -9								s. The drillholes	
widths and intercept	hole lengths are reported, there should										ould be minimal.	
lengths	be a clear statement to this effect (e.g. 'down hole length, true width not		,	3		-	, .		-			
	known').											
	Appropriate maps and sections (with											
	scales) and tabulations of intercepts	A map	of the d	rillhole	positi	ons is	includ	ed ir	1 the	press i	releases. A	
Diagrams	should be included for any significant discovery being reported These should	prelimi	nary stra	atigraph	nic col	umn h	as be	en c	omple	eted fo	r the project	
Lagrano	include, but not be limited to a plan	(previo	us pres	s releas	ses). A	section	on has	s not	beer	n inclue	ded as the larger	
	view of drillhole collar locations and	structu	ral block	s are s	uii be	ing del	ermin	ed v	vith th	ie drilli	ng.	
	appropriate sectional views.											
	Where comprehensive reporting of all Exploration Results is not											
Balanced	practicable, representative reporting				pths f	or all th	ne drill	hole	es hav	ve bee	n reported in	
reporting	of both low and high grades and/or	ine ta	ble belo	W.								
	widths should be practiced to avoid	[

Criteria		I ING C	OF EXP	LOF	RATION	RESULTS				
	Explanation						etail			
	misleading reporting of Exploration	Drilling BH I	ID	Trees	Merensky Intersection	Comment	From (m)	To (m)	Intersection	Reef
	Results.				Width (m)	Comment Highly weathered & friable,	From (m)	I o (m)	Width (m)	Comment
	. too uno.	E019	20.25	22.45	2.20	highly weathered & mable, inconclusive Highly weathered & friable,			•	Hole stopped short
		E019a	19.55	22.35	2.80	inconclusive No MR expected - East of MR	315.85	316.61	0.76	Complete intersection
		E060	-	•	-	sub outcrop	•	-		Faulted?
		E060_D1	-	-	-	sub outcrop	178.78	179.29	0.51	Complete intersection
		E062	-	-	-	No MR expected - East of MR sub outcrop	31.27	32.30	1.03	Complete intersection, moderately weathered
		E062_D1	-	-	-	No MR expected - East of MR sub outcrop	31.45	32.27	0.82	Moderately weathered & faulted. Incomplete intersection. Core loss.
		E062_D2	-	-	-	No MR expected - East of MR sub outcrop	31.16	31.56	0.40	Moderately weathered & faulted. Incomplete intersection. Core loss.
		E058	-			No MR expected - East of MR sub outcrop	140.88	141.29	0.41	Complete intersection
		E033	-	-	-	No MR expected - East of MR sub outcrop	253.62	254.25	0.63	Complete intersection
		E028 F004	66.70	68.66 212.90	1.96 2.13	Complete intersection Complete intersection	373.26	373.79	0.53	Complete intersection Poorly developed UG2
		E004 D1 E030	143.00	144.68	1.68	Deflection below MR Complete intersection	515.83	516.52	0.69	Poorty developed UG2 Complete intersection
		E035	-	-	-	No MR expected - East of MR	260.42	261.32	0.90	Complete intersection
		E037				sub outcrop No MR expected - East of MR				Not present / Pothole
		E049				sub outcrop No MR expected - East of MR				Faulted
		E031	122.40	124.29	1.89	sub outcrop Complete intersection	416.57	417.19	0.62	Complete intersection
		E044	-	-	-	No MR expected - East of MR sub outcrop	258.75	259.42	0.67	Complete intersection
		E016 E007	100.38	102.54	2.16	Faulted Complete intersection	449.24 417.42	450.01 418.12	0.77	Complete intersection
		E064	-	-	-	No MR expected - East of MR	156.19	157.05	0.86	Complete intersection
		E071				sub outcrop No MR expected - East of MR	180.04	180.73	0.69	Complete intersection
		E065	-		· .	sub outcrop No MR expected - East of MR	231.81	232.50	0.69	Complete intersection
		E005	259.78	261.44	1.66	sub outcrop Complete intersection	231.01 548.07	549.21	1.14	Complete intersection
		E015	-	-	-	No MR expected - East of MR sub outcrop	291.89	292.63	0.74	Complete intersection
		E020	54.20	54.57	0.37	Faulted No MR expected - East of MR	342.90	343.56	0.66	Complete intersection
		E041	-	-	-	sub outcrop	250.95	251.60	0.65	Complete intersection
		E067	-	-	-	No MR expected - East of MR sub outcrop	299.70	300.20	0.50	Complete intersection
		E013	12.00	18.62	6.62	Highly weathered & friable, inconclusive (core loss & No	321.26	321.76	0.50	Complete intersection
						stringers) No MR expected - East of MR				
		E024	-	-	-	sub outcrop	278.77	279.26	0.49	Complete intersection
		E069	-	-	-	No MR expected - East of MR sub outcrop	-	-		UG2 expected ~ 240m
		E027	-	-	-	No MR expected - East of MR sub outcrop	284.47	285.04	0.57	Complete intersection
		E014	37.28	39.41	2.13	Complete intersection No MR expected - East of MR		-		UG2 expected ~ 327m
		E052 E001D1	-	-		sub outcrop Deflection below MR	-	-		UG2 expected ~ 126m UG2 expected ~ 548m
	bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater,			e kilo	matraa			Ikm c		
ther substantive oploration data	geotechnical and rock characteristics; potential deleterious or contaminating substances.	flown reside	at a he ential a	322 eight reas	KT and betwee	n 25 m and 8 average heig	ht 3: 30 m	24 K ⁻ due	T with t to the t	e farms he survey being opography and itely 35 m to 40 m

	SECTION 2: REPOR	TING OF EXPLORATION RESULTS								
Criteria	Explanation	Detail								
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	273000 N 273000 N 273000 N 273000 N 270000 N 270000 N 270000 N 270000 N 100 100 100 100 100 100 100 10								